Департамент образования администрации Города Томска Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 43

Рассмотрено на заседании	Согласовано на заседании	Утверждена и введена
методического объединения	методического совета МАОУ	вдействие
учителей естественно-научного	СОШ№ 43 г. Томска Протокол	Приказ №365
направления	№ 2 от 30.08.2024г Зам.	от «30» августа
Протокол №1 от 29.08. 2024г	председателя НМС	2024Γ.
Рук. МО: Загайнова С.Ю.	О.А. Владимирова	И.о. директора МАОУ СОШ
		№43 г. Томска.
		К.С. Базюк

РАБОЧАЯ ПРОГРАММА

факультативного курса «Решение физических задач» на 2024-2025 учебный год для 11 классов

(34 часа, 1 час в неделю)

Внеурочная деятельность по развитию личности, ее способностей, удовлетворения образовательных потребностей и интересов, самореализации обучающихся

Учитель физики: Загайнова С.Ю.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа курса внеурочной деятельности «Решение физических задач» составлена с учетом следующих нормативных документов:

- 1. Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации».
- 2. Федеральный закон от 19.12.2023 № 618-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации».
- 3. Федеральный закон от 04.08.2023 № 479-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации».
- 4. Приказ Минпросвещения России от 31.05.2021 № 287 «Об утверждении федерального государственного образовательного стандарта основного общего образования» (в ред. Приказов Минпросвещения России от 18.07.2022 N 568, от 08.11.2022 N 955).
- 5. Приказ Минпросвещения России от 22.01.2024 № 31 «О внесении изменений в некоторые приказы Министерства образования и науки Российской Федерации и Министерства просвещения Российской Федерации, касающиеся федеральных государственных образовательных стандартов начального общего образования и основного общего образования».
- 6. Приказ Минпросвещения России от 18.05.2023 № 370 «Об утверждении федеральной образовательной программы основного общего образования».
- 7. Приказ Минпросвещения России от 01.02.2024 №62 «О внесении изменений в некоторые приказы Минпросвещения России, касающиеся федеральных образовательных программ основного общего образования и среднего образования».
- 8. Приказ Минпросвещения России от 19.02.2024 №110 «О внесении изменений в некоторые приказы Минпросвещения России и Министерства просвещения РФ, касающиеся федеральных государственных образовательных стандартов основного общего образования».
- 9. Приказ Минпросвещения России от 27.12.2023 №1028 О внесении изменений в некоторые приказы Минобрнауки и Минпросвещения, касающиеся ФГОС основного общего образования и среднего общего образования".
- 10. Приказ Минпросвещения России от 19.03.2024 N 171 "О внесении изменений в некоторые приказы Министерства просвещения Российской Федерации, касающиеся федеральных образовательных программ начального общего образования, основного общего образования и среднего общего образования" (Зарегистрировано в Минюсте России 11.04.2024 N 77830): номер опубликования: 00012024041 20003, дата опубликования: 12.04,2024.
- 11. Приказ Минпросвещения России от 22.03.2021 № 115 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования».
- 12. Постановление Главного государственного санитарного врача Российской Федерации от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» (вместе с «СП 2.4.3648-20. Санитарные правила...»).
- 13. Постановление Главного государственного санитарного врача Российской Федерации от 28 января 2021 г. № 2 «Об утверждении санитарных правил и норм СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания».
- 14. Приказ Минпросвещения России от 21.02.2024 №119 «О внесении изменений в приложения № 1 и № 2 к Приказу Минпросвещения России от 21.092022 № 858 Об утверждении ФПУ, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность и установления предельного срока использования исключенных учебников».
- 15. Приказ Министерства просвещения Российской Федерации от 21.05.2024 № 347 "О внесении изменений в приказ Министерства просвещения Российской Федерации от 21 сентября 2022 г. № 858 "Об утверждении федерального перечня учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную установления предельного срока использования исключенных деятельность, учебников" (Зарегистрирован 21.06.2024 № 78626)
- 16. Приказ Минпросвещения России от 18.07.2024 № 499 "Об утверждении федерального перечня электронных образовательных ресурсов, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования" (зарегистрировано в Минюсте РФ 16.08.2024 № 79172)

- 17. Методические рекомендации по обеспечению санитарно-эпидемиологических требований при реализации образовательных программ с применением электронного обучения и дистанционных образовательных технологий (МР 2.4.0330-23 утв. 29.08.2023 руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным санитарным врачом РФ А.Ю. Поповой).
- 18. Основная образовательная программа основного общего образования МАОУ СОШ № 43 г. Томска.
- 19. Программа развития МАОУ СОШ № 43 г. Томска.
- 20. Устав МАОУ СОШ № 43 г. Томска.
- 21. Нормативные документы и локальные акты школы.

Факультативный курс «Решение физически задач» рассчитана на преподавание в объеме 34 часов (1 час в неделю).

Цель данного курса внеурочной деятельности по физике углубить и систематизировать знания учащихся 11 классов по физике и способствовать их профессиональному самоопределению.

Цели:

- 1. развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний;
- 2. совершенствование полученных в основном курсе знаний и умений;
- 3. формирование представлений о постановке, классификациях, приемах и методах решения физических задач;
- 4. умение применять знания по физике для объяснения явлений природы, свойств вещества, решения физических задач, самостоятельного приобретения и оценки новой информации физического содержания.

Задачи:

- 1. углубление и систематизация знаний учащихся;
- 2. усвоение учащимися общих алгоритмов решения задач;
- 3. овладение основными методами решения задач.

Программа создана с учётом особенностей и традиций МАОУ СОШ № 43, предоставляющих широкие возможности обучающимся, имеющим разные достижения и результаты в раскрытии интеллектуальных и творческих возможностей личности. Программа направлена на достижение личностных и метапредметных результатов ФГОС.

Общая характеристика курса

Процесс решения задач служит одним из средств овладения системой научных знаний по тому или иному учебному предмету. Особенно велика его роль при обучении физике, где задачи выступают действенным средством формирования основополагающих физических знаний и умений. В процессе решения обучающиеся овладевают методами исследования различных явлений природы, знакомятся с новыми прогрессивными идеями и взглядами, с открытиями отечественных ученых, с достижениями отечественной науки и техники, с новыми профессиями.

Программа этого курса ориентирует учителя на дальнейшее совершенствование уже усвоенных обучающимися знаний и умений. Для этого вся программа делится на несколько разделов. В программе выделены основные разделы школьного курса физики, в начале изучения которых с учащимися повторяются основные законы и формулы данного раздела. При подборе задач по каждому разделу можно использовать вычислительные, качественные, графические, экспериментальные задачи.

В начале изучения курса дается два урока, целью которых является знакомство учащихся с понятием «задача», их классификацией и основными способами решения. Большое значение дается алгоритму, который формирует мыслительные операции: анализ условия задачи, догадка, проект решения, выдвижение гипотезы (решение), вывод.

При повторении обобщаются, систематизируются как теоретический материал, так и приемы решения задач, принимаются во внимание цели повторения при подготовке к единому государственному экзамену.

При решении задач по механике, молекулярной физике, электродинамике главное внимание обращается на формирование умений решать задачи, на накопление опыта решения задач различной трудности.

В конце изучения основных тем проводятся итоговые занятия в форме проверочных работ, задания которых составлены на основе открытых баз ЕГЭ по физике части «В» и части «С». Работы содержат от 5 до 10 задач, два варианта. После изучения небольших тем: «Волновые и квантовые свойства света» проводятся занятия в форме тестовой работы на 40 минут, содержащей задания из ЕГЭ (часть «А» и часть «В»).

Принципы отбора содержания и организации учебного материала

- соответствие содержания задач уровню классической физики, выдержавших проверку временем, а также уровню развития современной физики, с возможностью построения в процессе решения физических и математических моделей изучаемых объектов с различной степенью детализации, реализуемой на основе применения: конкретных законов, физических теорий, фундаментальных физических законов, методологических принципов физики, а также методов экспериментальной, теоретической и вычислительной физики;
- соответствие содержания и форм предъявления задач требованиям государственных программ по физике;
- возможность обучения анализу условий экспериментально наблюдаемых явлений, рассматриваемых в задаче;
- возможность формирования посредством содержания задач и методов их решения научного мировоззрения и научного подхода к изучению явлений природы, адекватных стилю мышления, в рамках которого может быть решена задача;
- жизненных ситуаций и развития научного мировоззрения.

Предлагаемый курс ориентирован на коммуникативный исследовательский подход в обучении, в котором прослеживаются следующие этапы субъектной деятельности учащихся и учителя: совместное творчество учителя и учащихся по созданию физической проблемной ситуации или деятельности по подбору цикла задач по изучаемой теме анализ найденной проблемной ситуации (задачи) четкое формулирование физической части проблемы (задачи), выдвижение гипотез, разработка моделей (физических, математических), прогнозирование результатов развития во времени экспериментально наблюдаемых явлений, проверка и корректировка гипотез нахождение решений, проверка и анализ решений предложения по использованию полученных результатов для постановки и решения других проблем (задач) по изучаемой теме, по ранее изученным темам курса физики, а также по темам других предметов естественнонаучного цикла, оценка полученного значения.

1. СОДЕРЖАНИЕ ПРОГРАММЫ

1. Физическая задача. Классификация задач (2 ч)

Что такое физическая задача. Состав физической задачи. Физическая теория и решение задач. Значение задач в обучении и жизни.

Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов. Составление физических задач. Основные требования к составлению задач. Способы и техника составления задач. Примеры задач всех видов.

2. Правила и приемы решения физических задач (4 ч)

Общие требования при решении физических задач. Этапы решения физической задачи. Работа с текстом задачи. Анализ физического явления; формулировка идеи решения (план решения). Выполнение плана решения задачи. Числовой расчет. Использование вычислительной техники для расчетов. Анализ решения и его значение. Оформление решения. Типичные недостатки при решении и оформлении решения физической задачи. Изучение примеров решения задач. Различные приемы и способы решения: алгоритмы, аналогии, геометрические приемы. Метод размерностей, графические решения и другие решения.

3. Электрическое и магнитное поля (5 ч)

Характеристика решения задач раздела: общее и разное, примеры и приемы решения. Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией. Решение задач на описание систем конденсаторов. Задачи разных видов на описание магнитного поля тока и его действия: магнитная индукция и магнитный поток, сила Ампера и сила Лоренца. Решение качественных экспериментальных задач с использованием электрометра, магнитного зонда и другого оборудования.

1. Постоянный электрический ток в различных средах (9 ч)

Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи разных видов на описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений. Ознакомление с правилами Кирхгофа при решении задач. Постановка и решение фронтальных экспериментальных задач на определение показаний приборов при изменении сопротивления тех или иных участков цепи, на определение сопротивлений участков цепи и т. д. Решение задач на расчет участка цепи, имеющей ЭДС.

Задачи на описание постоянного электрического тока в электролитах, вакууме, газах, полупроводниках: характеристика носителей, характеристика конкретных явлений и др. Качественные, экспериментальные, занимательные задачи, задачи с техническим содержанием, комбинированные задачи.

Конструкторские задачи на проекты: установка для нагревания жидкости на заданную температуру, модель автоматического устройства с электромагнитным реле, проекты и модели освещения, выпрямитель и усилитель на полупроводниках, модели измерительных приборов, модели «черного ящика».

2. Электромагнитные колебания и волны (12 ч)

Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность.

Задачи на переменный электрический ток: характеристики переменного электрического тока, электрические машины, трансформатор.

Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи по геометрической оптике: зеркала, оптические схемы. Классификация задач по СТО и примеры их решения.

Задачи на определение оптической схемы, содержащейся в «черном ящике»: конструирование, приемы и примеры решения. Групповое и коллективное решение экспериментальных задач с использованием осциллографа, звукового генератора, трансформатора, комплекта приборов для изучения свойств электромагнитных волн, электроизмерительных приборов.

Экскурсия с целью сбора данных для составления задач.

Конструкторские задачи и задачи на проекты: плоский конденсатор заданной емкости, генераторы различных колебаний, прибор для измерения освещенности, модель передачи электроэнергии и др.

3. Обобщающее занятие по методам и приёмам решения физических задач (2 ч)

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА, КУРСА

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения курса внеурочной деятельности «Решение физических задач» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

гражданского воспитания:

- сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;
- принятие традиционных общечеловеческих гуманистических и демократических ценностей;
- готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в образовательной организации;
- умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением:
- готовность к гуманитарной и волонтёрской деятельности.

патриотического воспитания:

- сформированность российской гражданской идентичности, патриотизма;
- ценностное отношение к государственным символам, достижениям российских учёных в области физики и технике.

духовно-нравственного воспитания:

- сформированность нравственного сознания, этического поведения;
- способность оценивать ситуацию и принимать осознанные решения, ориентируясь на моральнонравственные нормы и ценности, в том числе в деятельности учёного;
- осознание личного вклада в построение устойчивого будущего.

эстетического воспитания:

• эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке.

трудового воспитания:

- интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;
- готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни.

экологического воспитания:

- сформированность экологической культуры, осознание глобального характера экологических проблем;
- планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;
- расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике.

ценности научного познания:

- сформированность мировоззрения, соответствующего современному уровню развития физической науки;
- осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Познавательные универсальные учебные действия

Базовые логические действия:

- самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;
- определять цели деятельности, задавать параметры и критерии их достижения;
- выявлять закономерности и противоречия в рассматриваемых физических явлениях;
- разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;
- вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

- владеть научной терминологией, ключевыми понятиями и методами физической науки;
- владеть способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;
- владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях в области физики;
- выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;
- анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;
- ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;
- давать оценку новым ситуациям, оценивать приобретённый опыт;
- уметь переносить знания по физике в практическую область жизнедеятельности;
- уметь интегрировать знания из разных предметных областей;
- выдвигать новые идеи, предлагать оригинальные подходы и решения;
- ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

- владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;
- оценивать достоверность информации;
- использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Коммуникативные универсальные учебные действия:

- осуществлять общение во внеурочной деятельности;
- распознавать предпосылки конфликтных ситуаций и смягчать конфликты;
- развёрнуто и логично излагать свою точку зрения с использованием языковых средств;
- понимать и использовать преимущества командной и индивидуальной работы;
- выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;
- принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;
- оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

- предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;
- осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия

Самоорганизация:

- самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;
- самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;
- давать оценку новым ситуациям;
- расширять рамки учебного предмета на основе личных предпочтений;
- делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;
- оценивать приобретённый опыт;
- способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль, эмоциональный интеллект:

- давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;
- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований;
- использовать приёмы рефлексии для оценки ситуации, выбора верного решения;
- уметь оценивать риски и своевременно принимать решения по их снижению;
- принимать мотивы и аргументы других при анализе результатов деятельности;
- принимать себя, понимая свои недостатки и достоинства;
- принимать мотивы и аргументы других при анализе результатов деятельности;
- признавать своё право и право других на ошибки.

В процессе достижения личностных результатов освоения программы курса внеурочной деятельности по физике для уровня среднего общего образования у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

- самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;
- саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;
- внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей;
- эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;
- социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в *11 классе* предметные результаты на углублённом уровне должны отражать сформированность у обучающихся умений:

• понимать роль физики в экономической, технологической, социальной и этической сферах деятельности человека, роль и место физики в современной научной картине мира, роль астрономии в практической деятельности человека и дальнейшем научно-техническом развитии, значение описательной, систематизирующей, объяснительной и прогностической функций

физической теории — электродинамики, специальной теории относительности, квантовой физики, роль физической теории в формировании представлений о физической картине мира, место физической картины мира в общем ряду современных естественно-научных представлений о природе;

- различать условия применимости моделей физических тел и процессов (явлений): однородное электрическое и однородное магнитное поля, гармонические колебания, математический маятник, идеальный пружинный маятник, гармонические волны, идеальный колебательный контур, тонкая линза, моделей атома, атомного ядра и квантовой модели света;
- различать условия (границы, области) применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- анализировать и объяснять электромагнитные процессы и явления, используя основные положения и законы электродинамики и специальной теории относительности (закон сохранения электрического заряда, сила Ампера, сила Лоренца, закон электромагнитной индукции, правило Ленца, связь ЭДС самоиндукции в элементе электрической цепи со скоростью изменения силы тока, постулаты специальной теории относительности Эйнштейна);
- анализировать и объяснять квантовые процессы и явления, используя положения квантовой физики (уравнение Эйнштейна для фотоэффекта, первый и второй постулаты Бора, принцип соотношения неопределённостей Гейзенберга, законы сохранения зарядового и массового чисел и энергии в ядерных реакциях, закон радиоактивного распада);
- описывать физические процессы и явления, используя величины: напряжённость электрического поля, потенциал электростатического поля, разность потенциалов, электродвижущая сила, индукция магнитного поля, магнитный поток, сила Ампера, индуктивность, электродвижущая сила самоиндукции, энергия магнитного поля проводника с током, релятивистский импульс, полная энергия, энергия покоя свободной частицы, энергия и импульс фотона, массовое число и заряд ядра, энергия связи ядра;
- объяснять особенности протекания физических явлений: электромагнитная индукция, самоиндукция, резонанс, интерференция волн, дифракция, дисперсия, полное внутреннее отражение, фотоэлектрический эффект (фотоэффект), альфа- и бета-распады ядер, гамма-излучение ядер, физические принципы спектрального анализа и работы лазера;
- определять направление индукции магнитного поля проводника с током, силы Ампера и силы Лоренца;
- строить изображение, создаваемое плоским зеркалом, тонкой линзой, и рассчитывать его характеристики;
- применять основополагающие астрономические понятия, теории и законы для анализа и объяснения физических процессов, происходящих в звёздах, в звёздных системах, в межгалактической среде; движения небесных тел, эволюции звёзд и Вселенной;
- проводить исследование зависимостей физических величин с использованием прямых измерений, при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде графиков с учётом абсолютных погрешностей измерений, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин, при этом выбирать оптимальный метод измерения, оценивать абсолютные и относительные погрешности прямых и косвенных измерений;
- проводить опыты по проверке предложенной гипотезы: планировать эксперимент, собирать экспериментальную установку, анализировать полученные результаты и делать вывод о статусе предложенной гипотезы;
- описывать методы получения научных астрономических знаний;
- соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, практикума и учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;
- решать расчётные задачи с явно заданной и неявно заданной физической моделью: на основании анализа условия выбирать физические модели, отвечающие требованиям задачи, применять формулы, законы, закономерности и постулаты физических теорий при использовании

- математических методов решения задач, проводить расчёты на основании имеющихся данных, анализировать результаты и корректировать методы решения с учётом полученных результатов;
- решать качественные задачи, требующие применения знаний из разных разделов курса физики, а также интеграции знаний из других предметов естественно-научного цикла: выстраивать логическую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;
- использовать теоретические знания для объяснения основных принципов работы измерительных приборов, технических устройств и технологических процессов;
- применять различные способы работы с информацией физического содержания с использованием современных информационных технологий, при этом использовать современные информационные технологии для поиска, переработки и предъявления учебной и научно-популярной информации, структурирования и интерпретации информации, полученной из различных источников, критически анализировать получаемую информацию и оценивать её достоверность как на основе имеющихся знаний, так и на основе анализа источника информации;
- работать в группе с исполнением различных социальных ролей, планировать работу группы, рационально распределять деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы;
- проявлять мотивацию к будущей профессиональной деятельности по специальностям физикотехнического профиля.

Календарно – тематическое планирование

№		Тема занятия	Кол-во часов	
1		Физическая задача (2 ч)		
	1	Классификация задач	1	https://phys-ege.sdamgia.ru
	2	Правила и примеры решения физических задач	1	https://phys-ege.sdamgia.ru
2		Правила и приемы решения физических задач (3		https://phys-ege.sdamgia.ru
		ч)		
	3	Общие требования при решении физических задач.	1	https://phys-ege.sdamgia.ru
		Этапы решения физической задачи		
	3	Составление плана решения задач	1	https://phys-ege.sdamgia.ru
	4	Оформление решения.	1	https://phys-ege.sdamgia.ru
		Типичные недостатки при решении и оформлении		
		решений		
	5	Различные приемы и способы решения	1	https://phys-ege.sdamgia.ru
3		Электрическое и магнитное поле (5 ч)		
	7	Характеристика решения задач раздела: общее и	1	https://phys-ege.sdamgia.ru
		разное, примеры и приемы решения.		
	8	Задачи разных видов на описание электрического	2	https://phys-ege.sdamgia.ru
		поля различными средствами и приемами		
	9	Задачи разных видов на описание магнитного поля	2	https://phys-ege.sdamgia.ru
		различными средствами и приемами		
4		Постоянный электрический ток (9 ч)		
	10	Задачи на различные приемы расчета сопротивления	1	https://phys-ege.sdamgia.ru
		сложных электрических цепей.		
	11	Задачи разных видов на описание электрических	2	https://phys-ege.sdamgia.ru
		цепей постоянного электрического тока с помощью		
		закона Ома для замкнутой цепи и др. законов		
	12	Задачи разных видов на описание электрических	2	https://phys-ege.sdamgia.ru
		цепей постоянного электрического тока		
		Ознакомление с правилами Кирхгофа при решении		
		задач.		
	13	Задачи на описание постоянного электрического тока	2	https://phys-ege.sdamgia.ru
		в электролитах, вакууме, газах, полупроводниках:		

	T4		
14		2	https://phys-ege.sdamgia.ru
	электромагнитных устройств		
5	Электромагнитные колебания и волны (12 ч)		
15	Задачи разных видов на описание явления	2	https://phys-ege.sdamgia.ru
	электромагнитной индукции, закон электромагнитной		
	индукции,		
10	б Задачи на переменный электрический ток:	2	https://phys-ege.sdamgia.ru
	характеристики переменного электрического тока,		
17	Задачи на описание различных свойств	2	https://phys-ege.sdamgia.ru
	электромагнитных волн: скорость, отражение,		
	преломление, интерференция		
18	Задачи по геометрической оптике: зеркала,	2	https://phys-ege.sdamgia.ru
	оптические схемы		
19	Задачи на определение оптической схемы,		https://phys-ege.sdamgia.ru
	содержащейся в «черном ящике»: конструирование,		
	приемы и примеры решения.		
20	Классификация задач по СТО и примеры их решения.	1	https://phys-ege.sdamgia.ru
2	Конструкторские задачи и задачи на проекты: плоский	2	https://phys-ege.sdamgia.ru
	конденсатор заданной емкости, генераторы различных		
	колебаний, прибор для измерения освещенности,		
	модель передачи электроэнергии и др.		
22	Конструкторские задачи и задачи на проекты: плоский	1	https://phys-ege.sdamgia.ru
	конденсатор заданной емкости, генераторы различных		
	колебаний, Конструкторские задачи и задачи на		
	проекты: прибор для измерения освещенности, модель		
	передачи электроэнергии и др.		
6	Обобщающее занятие по методам и приёмам	3	https://fipi.ru/ege/otkrytyy-bank-
	решения физических задач (3 ч)		zadaniy-ege
		•	•

Перечень учебно-методических средств обучения

Литература для учителя

- 1. Бобошина С. Б. «ЕГЭ. Физика. Практикум по выполнению типовых тестовых заданий», М., Экзамен, 2014
- 2. Демидова М.Ю. «ЕГЭ. Физика», М., Национальное образование, 2020-2024.
- 3. Марон Е.А, Опорные конспекты и разноуровневые задания. СПб.: ООО «Виктория плюс», 2007

Литература для учащихся:

- 1. ОГЭ. Физика. Типовые экзаменационные варианты. 30 вариантов. Демидова М.Ю.— М.: «Национальное образование », 2020.
- 2. ОГЭ. Физика. Типовые экзаменационные варианты. 30 вариантов. Демидова М.Ю.— М.: «Национальное образование », 2021.
- 3. ОГЭ. Физика. Типовые экзаменационные варианты. 30 вариантов. Демидова М.Ю.— М.: «Национальное образование », 2022.
- 4. ОГЭ. Физика. Типовые экзаменационные варианты. 30 вариантов. Демидова М.Ю.– М.: «Национальное образование », 2023.
- 5. ОГЭ. Физика. Типовые экзаменационные варианты. 30 вариантов. Демидова М.Ю.— М.: «Национальное образование », 2024.

Информационно-компьютерная поддержка.

- 6. https://phys-ege.sdamgia.ru/ Решу ЭГЭ по физике
- 7. https://fipi.ru/ege/demoversii-specifikacii-kodifikatory Демоверсия ЕГЭ по физике 2025
- 8. https://fipi.ru/ege/otkrytyy-bank-zadaniy-ege Открытый банк заданий ЕГЭ по физике